EDAD Y CRECIMIENTO DEL CALAMAR (Illex argentinus)

A.L. Arkhipkin

Instituto Científico de Investigaciones Pesqueras y Oceanográficas en el Atlántico (AtlantNIRO)
5 Dm. Donskoy, Kaliningrado 236000. U.R.S.S.

RESUMEN: Se determinaron la edad, el ritmo de crecimiento y la estructura intraespecífica del calamar (Illex argentinus) a partir de 3,350 individuos con largo del manto de 1,9 a 39 cm, colectados en la plataforma y en el talud continental de la Argentina entre 45° y 47° S a profundidades de 120 a 850 m. Por medio del cálculo retrospectivo de las fechas de nacimiento se determinó que en el área examinada existen cuatro agrupaciones intraespecíficas de Illex argentinus que se distinguen por los plazos de desove y biotopos de desove y también por el tamaño de los individuos maduros. Ellas son: agrupación de desove de verano, agrupación de desove estival, agrupación de desove invernal y agrupación de desove primaveral.

La edad máxima para los calamares de todas las agrupaciones fue de 330 a 340 días. El ritmo de crecimiento máximo en calamares de la agrupación invernal fue de 2 a 2,2% del largo del manto por día. En los individuos inmaduros mayores el ritmo de crecimiento fue de 1,1-3,3% del largo del manto por día y en los individuos maduros de 0,4-0,8% Se determinaron las diferencias entre el ritmo de crecimiento de calamares de distintos sexos y de diferentes agrupaciones en un año y de la misma agrupación en diferentes años. Entre los plazos de desove de calamares de diferentes agrupaciones no fueron observadas discontinuidades. Basándose en la coincidencia parcial de plazos y biotopos de desove de las agrupaciones así como en un amplio rango de edades de calamares desovantes, se puede suponer que las agrupaciones de Illex argentinus no son genéticamente aisladas y representan unidades intrapoblacionales.

Palabras clave: Calamar, Illex argentinus, estatutos, edad, crecimiento.

SUMMARY: AGE AND GROWTH OF THE SQUID (Illex argentinus). — According to the results of treatment with mantle length of 1.9-39 cm which were collected on the argentinian shelf and its continental slope, in the area between 45°S and 47°S, at the depths of 120-850 m, age, growth rate and intraespecific structure of this species were determined. It was defined by a retrospective calculation of squid birth dates that in the area under examination four Illex argentinus intraespecific groups had existed which differed by spawning terms and biotopes, as well as by mature individual size. They are: summer spawning, autumn spawning, winter spawning and spring spawning groups. Maximum age of squids from all the groups was of 330 to 340 days. Maximum growth rates within the length frequency range examined was observed for juveniles from winter group, being 2–2,2% of mantle length per day. In larger immature squids growth rates were reduced to 1–1,3% of mantle length per day, observing minimum growth rates of 0,4–0,8% of mantle length per day for mature individuals. There were found differences between growth rates for squids of different sexes and different groups within the same year and for the same group in different years. The discontinuity between spawning seasons for squids from different groups was not observed. Judging from overlapping of spawning season and biotopes for the groups, as well as from a wide spawning age range of squids themselves, Illex argentinus groups are not genetically isolated and represent intrapopulation units.

Key words: Squid, Illex argentinus, espolones, age, growth.

INTRODUCCIÓN

El calamar aleta corta argentino (Illex argentinus) es una de las especies comerciales más importantes de la plataforma y el talud continental de Argentina y Uruguay. A pesar de una intensa pesca (Csrke, 1987), la biología de esta especie fue poco estudiada. Según los biotopos, plazos de desove y tamaños de los individuos maduros se determinaron dos agrupaciones: de verano y de invierno (Brunetti, 1981; Hatanaka, 1983), y cuatro agrupaciones intraespecíficas de status no claro: agrupación de verano (AV), agrupación otoñal (AO), agrupación invernal (AI) y agrupación primaveral (AP) (Nigmatullin, 1986). En el área de pesca entre 46 y 47°S la más abundante es la AV que domina en las capturas desde febrero hasta julio (Nigmatullin, 1986).

El crecimiento del calamar argentino ha sido estudiado por el método indirecto, es decir por el desplazamiento de tamaños modales o tallas medias en el tiempo. Se determinó que el ritmo de crecimiento lineal de las hembras adultas es mayor que en los machos y por eso sus tallas máximas promedio son también mayores (32,6 y 28,3 cm respectivamente) (Koronkiewicz, 1980). La curva de crecimiento para Illex argentinus fue aproximada según la función lineal (Koronkiewicz, 1980), o según las funciones de von Bertalanffy (Hatanaka, 1986a).

Estimaciones más precisas de la edad y el
ritmo de crecimiento de calamares se pueden
obtener con el método directo, es decir estu-
diando las estructuras registrantes tales como los
estatolitos. En los estatolitos de la especie aflu-
Ilex illecebrosus, los anillos de crecimiento fue-
ron registrados tanto en juveniles como en adul-
tos (Lipinski, 1978; Hurley et al., 1979). Al in-
troducir en el organismo del calamar una marca
de tetraciclina o de estroncio y al comparar el
número de anillos desde el margen del estatolito
hasta la marca y el número de días del experi-
mento, se puede demostrar la naturaleza diaria
de los anillos menores de crecimiento (Hurley
et al., 1985). El ritmo diario de formación de
anillos de crecimiento sobre los estatolitos fue
confirmado también para calamares de otras es-
pecies (Hixon y Villoc, 1984; Lipinski, 1986;
Yang et al., 1986; Natsukari et al., 1988). En
Ilex argentinus no se estudió la edad por esta-
lotitos, describiéndose sólo su morfología (Leta,
1982).

El principal objetivo de este artículo consis-
ta en el estudio de la edad y el ritmo de creci-
miento de Ilex argentinus mediante estatolitos.

MATERIAL Y MÉTODOS

Se utilizaron 3.350 individuos del calamar
argentino con largo del manto (LM) de 1,9 a
39 cm recogidos durante las campañas realizadas
por los barcos de investigación científica soviéti-
cos entre los 45 y 47°S, sobre la plataforma y el
talud continental de la Argentina, desde 1982
hasta 1987. Los calamares se pescaron con re-
des de arrester a profundidades entre 130 y 180
m con poteras (jigging) en la capa subsuperfic-
ial del agua. La colecta de estatolitos se rea-
lizó a bordo del barco a partir del material fres-
co. Asimismo se tomaron medidas del largo del
manto y el peso y se determinaron el sexo y el
estado de madurez de los individuos.

En cuanto a la extracción de estatolitos, el
método descrito por Leta (Leta, 1982) es de
mansiado complicado y lleva mucho tiempo,
siendo útil principalmente para los colectores
principiantes. Teniendo cierta experiencia,
es mucho más rápido levantar el embudo y co-
tar con un escapeclo agudo la cápsula carilagi-
nosa del calamar situada sobre la superficie sa-
gital, aproximadamente en el tercio posterior de
la fosita de embudo. En el corte se ven en este
caso las partes anteriores de los estatocistos con
los estatolitos incorporados. Los estatolitos no
se cayeron a la cavidad del estatocisto y se pu-
dieron separar fácilmente con la espátula. En
los juveniles primitivos (de 4 a 5 cm LM) los
estatolitos fueron separados con ayuda de un
microscopio de x16 x 32 de amplificación.

Después de separar los estatolitos se conser-
vieron en alcohol etílico de 96°. Otros líquidos
fijadores (tales como glicerina o soluciones de
alcohol etílico de menor concentración) produ-
ieron la descomposición de las capas superiores
del estatolito. Al guardar el material durante un
período de tiempo prolongado es necesario que
las muestras sean fijadas otra vez. En ausencia
de alcohol los estatolitos se guardaron en seco
después de un detenido secado.

Los estatolitos fueron pegados a los porta-
objetos con resinas sintéticas transparentes, ti-
po Protex, Diatex o con cola Super cemento de
producción polaca. La primera pegadura fue rea-
lizada con la parte convexa (posterior) del esta-
tolito dirigida hacia abajo. En este caso es más
fácil orientarlo con su principal superficie de
pulido (que pasa por los radios mayores de los
domos dorsal y lateral) paralela a la superficie
del vidrio y, después de pulir, separarlo de la
cola. Los estatolitos fueron pulidos inmediata-
mente después de secar la cola con papel esme-
ril de grano grueso (10-12u) y luego con papel
de grano fino (6-8u), mojados con agua o con
otro líquido abrasivo. Los estatolitos de los
juveniles más pequeños recibieron un pulido
unilateral, mientras que los juveniles avanzados
y los individuos adultos recibieron un pulido
bilateral. Una vez pulidos se colocaron en un
preparado de propiedades clarificantes (bálsa-
mo del Canadá).

Antes de contar anillos diarios de crecimien-
to, se determinaron zonas de crecimiento mi-
diéndose su radio mayor. Se contaron anillos
diarios separadamente para cada zona con una
amplificación de x400 y x600, midiéndose tam-
bién su ancho. Algunas veces era difícil contar
los anillos debido a la aparición de rayas de di-
fracción junto a anillos bien marcados. Dichas
rayas se pudieron eliminar con ayuda de fil-
tros de luz mate o de color azul.

Para la descripción de los estatolitos se usó
la terminología de Clarke (1978).

La edad de los calamares se determinó en
días como el número total de las marcas de cre-
cimiento diario sobre los estatolitos. Para el
cálculo retrospectivo de tiempo de captura se
determinó la fecha de nacimiento de cada indi-
víduo. Como los datos sobre el crecimiento de
diferentes agrupaciones no se conocían para to-
da la ontogenia, no se calcularon las curvas de
crecimiento total.

Para comparar el ritmo de crecimiento de
calamares pertenecientes a diferentes agrupacio-
nes las curvas de crecimiento se dividieron en
intervalos de 30 días, aproximando el crecimiento
en cada intervalo por medio de la función exponencial. Para cada intervalo se calcularon los incrementos relativos (es decir velocidad específica promedio de crecimiento) según la fórmula:

\[G = \frac{\ln W_2 - \ln W_1}{t_2 - t_1} \]

donde \(G\) es la velocidad específica promedio de crecimiento, \(W_2\) es el largo o peso del calamar en el tiempo \(t_2\) y \(W_1\) es el largo o peso del individuo en el tiempo \(t_1\) (Forsythe y Van Heuvelen, 1987).

RESULTADOS OBTENIDOS

Morfología de los estatalitos

Al estudiar la morfología de los estatalitos de *Illex argentinus*, se observó que éstos guardaban las características de las especies de la familia Ommastrephicidae (Fig. 1), a saber: cuerpo y rostro lisos, sin tubérculos; domo dorsal no grande, de forma triangular, prácticamente desplazado hacia la parte interna del estatalito con su lóbulo superior del domo lateral; el ángulo entre el domo dorsal y el rostro es de 90 a 100°; domo lateral bien desarrollado, rostro corto, consta de 28 a 30% del largo total del estatalito, siendo su sección transversal de forma de ellipse bien prolongada; el ángulo entre el rostro y el plano del cuerpo del estatalito es de unos 45°; ala no ancha, dos veces más ancha que el rostro, sin huecos; cresta dorsal posterior poco desarrollada, en forma de excrencencia, no sobresaliendo del domo dorsal.

En los individuos adultos fueron características dos formas de estatalitos: con el ángulo obtuso rostral bien desarrollado (90 a 110°, forma A) o poco desarrollado (130 a 140°, forma B) (Fig. 1). La frecuencia de formas de los estatalitos en diferentes generaciones no fue igual (Tabla 1). En 1986 en calamares de la AO la frecuencia de estatalitos de la forma B fue considerablemente mayor que en 1987. En individuos de la AO prácticamente no se encontraron estatalitos de la forma B.

Formación de los estatalitos

En *Illex argentinus* se observaron los mismos estádios de formación de estatalitos que los encontrados en *Illex illecebrosus* (Morris y Aldrich, 1984) y en los calamares de la subfamilia Ommastrephicidae (Arkhipkin y Murzov, 1986). El tránsito de estatalitos del tercer estadio (el ala no está unida con el cuerpo del estatalito) al cuarto (el ala uniéndose con el domo medial del estatalito) tiene lugar con el largo del manto de 7 a 9 cm; los estatalitos pasan del cuarto estadio al quinto (orificio medial completamente cerrado) con un amplio rango de largos; para las hembras entre 22-23 cm y para los machos entre 19-20 cm y 26-27 cm.

![Fig. 1. Tipos de estatalitos en los calamares de Illex argentinus (A = forma A; B = forma B; 1 = domo dorsal; 2 = domo lateral; 3 = rostro; 4 = ala; 5 = espolón; 6 = cresta dorsal; 7 = ángulo rostral)](image-url)
Crecimiento de los estatolitos

La curva de crecimiento alométrico se aproxima bien por la función potencial (2);

\[L_x = 0.115 L_m^{0.407} \] (2)

donde \(L_x \) es el largo total del estatolito (mm) y \(L_m \) es el largo del manto (mm). No se observaron rupturas en la curva de crecimiento. El valor del coeficiente \(b \) es un poco menor que los valores observados para los calamares de la subfamilia Ommastrephinae (Arkhipkin y Murzov, 1986). El crecimiento en ontogenia de Illex argentinus se caracterizó por una alometría negativa.

Microestructura de los estatolitos

Los anillos menores en estatolitos de Illex argentinus se consideraron como los diarios analógicamente a aquellos estudiados en Illex illecebrosus (Hurley et al., 1985). Los anillos diarios formaron cuatro zonas de crecimiento que se diferenciaron entre sí por el color y ancho de los mismos. Ellos son:

- **Nucleus**: de 20 a 32\(\mu \) de diámetro, no se observaron anillos de crecimiento.
- **Zona postnuclear**: a partir de la periferia del núcleo. Fue transparente bajo la luz transmitida, siendo el ancho del anillo de 1,5 a 3\(\mu \). El número de anillos en la zona varió poco, tanto para los machos como para las hembras eclosionados en diferentes meses, estando entre 32 y 50 o 38-40 en promedio (Tabla 2).
- **Zona obscura**: fue oscura bajo la luz transmitida y opaca bajo la luz reflejada, siendo el ancho de los anillos entre 2 y 6\(\mu \) (normalmente de 3 a 5\(\mu \)). El número de anillos en la zona varió mucho, estando entre 80 y 250. Tanto para las hembras como para los machos, el número promedio de anillos en la zona se diferenciaba entre

![Fig. 2. Curvas de crecimiento para diferentes agrupaciones de Illex argentinus y para la agrupación de desove de invierno de Illex illecebrosus. Illex illecebrosus. Illex argentinus: ♂. Calamares eclosionados en agosto (1), julio (2), junio (3) y mayo (4) de 1987. Hembras eclosionadas en mayo (5) de 1985. Juveniles eclosionados en diciembre (6) y febrero (7) de 1987.](image-url)
las diferentes generaciones (Tabla 2), siendo el mínimo para los calamares de la generación de agosto (146 a 148 anillos) y el máximo para los individuos de la generación de marzo (194) y abril (182).

Zona periférica: se extiende desde la parte periférica de la zona obscura hasta el borde del estatalito. Fue, como la zona postnuclear, transparente bajo la luz transmitida. El ancho de los anillos disminuyó gradualmente siendo en la parte periférica de 1,5 a 2 µ. El número de anillos en los calamares adultos varió entre 40 y 120.

En algunos estatalitos de calamar se observaron tanto marcas de crecimiento completo como incompleto, caso similar al de peces (Campana y Neilson, 1985), atribuidas a una demora temporal en el crecimiento del estatalito. Las causas de demora en el crecimiento de estatalitos pueden derivarse de los grandes intervalos o variaciones en la intensidad de alimentación, así como a los traumas y desove.

Edad y ritmo de crecimiento

En nuestro material, la edad mínima se observó en un individuo juvenil perteneciente a la AV, de 1,9 cm de largo y de 63 días de edad, correspondiendo la edad máxima a una hembra madura de 27 cm de largo y 380 días de edad.

Se puede estimar el ritmo de crecimiento para las larvas al saber el largo del manto inicial y final y la duración del estadio. Al comparar con la especie afin Ilex illecebrosus y con los tamaños de huevos de Ilex argentinus, se concluye que la eclosión de las larvas ocurre con el largo entre 0,09 y 0,1 cm (O’Dor et al., 1981) y la división de la probóscide con el largo entre 0,8 y 0,9 cm (Hatanaka, 1986b). Así, el ritmo de crecimiento relativo de las larvas es de 5,4 a 6% del largo del manto por día (LM/día) y entre 15 y 16% de la masa del cuerpo por día (M/día). El ritmo de crecimiento de las larvas fue similar al de los juveniles primitivos de Sepioteuthis sepioides estudiados en acuario (La Roe, 1971). Este ritmo de crecimiento es bastante alto.

El ritmo de crecimiento de los juveniles fue principalmente estudiado para los calamares de la AV (Fig. 2, Tabla 3). En las primeras etapas del desarrollo la generación de diciembre tuvo un ritmo de crecimiento más alto que la de febrero y para la edad de 120 días los calamares alcanzaron los 8,5 cm y 5 cm de largo. Luego, el ritmo de crecimiento relativo de la generación de diciembre bajó en comparación con la generación de febrero, pero no obstante a la edad de 240 días la generación de diciembre alcanzó el largo de 21,5 cm y la de febrero 19 cm. Según las curvas de crecimiento de calamares

Tabla 1. Frecuencia (%) de estatalitos de la forma A en machos y hembras de Ilex argentinus eclosionados en diferentes meses de 1986 y 1987 (N = número total de individuos).

<table>
<thead>
<tr>
<th>AÑO</th>
<th>SEXO</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td>Hembras</td>
<td>17</td>
<td>46</td>
<td>60</td>
<td>79</td>
<td>77</td>
<td>60</td>
<td></td>
<td></td>
<td>526</td>
</tr>
<tr>
<td></td>
<td>Machos</td>
<td>31</td>
<td>58</td>
<td>85</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>255</td>
</tr>
<tr>
<td>1987</td>
<td>Hembras</td>
<td>85</td>
<td>92</td>
<td>92</td>
<td>90</td>
<td>89</td>
<td>65</td>
<td></td>
<td></td>
<td>1048</td>
</tr>
<tr>
<td></td>
<td>Machos</td>
<td>100</td>
<td>93</td>
<td>93</td>
<td>94</td>
<td>77</td>
<td>88</td>
<td></td>
<td></td>
<td>513</td>
</tr>
</tbody>
</table>

Tabla 2. Número promedio de anillos en las zonas postnuclear y obscura en hembras y machos de Ilex argentinus eclosionados en diferentes meses (N= número promedio de anillos, DEN=desviación estándar normalizada, N1 = número total de individuos, M=mes).

<table>
<thead>
<tr>
<th>ZONA</th>
<th>SEXO</th>
<th>M:</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
<th>X</th>
<th>XI</th>
<th>XII</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSTNUCLEAR</td>
<td>Hembras</td>
<td>Na</td>
<td>38,1</td>
<td>40,4</td>
<td>41,0</td>
<td>39,0</td>
<td>39,1</td>
<td>38,9</td>
<td>39,2</td>
<td>39,5</td>
<td>38,4</td>
<td>44,0</td>
<td>38,2</td>
<td>1959</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Machos</td>
<td>DEN</td>
<td>1,76</td>
<td>0,61</td>
<td>0,65</td>
<td>0,67</td>
<td>0,27</td>
<td>0,16</td>
<td>0,04</td>
<td>0,25</td>
<td>0,44</td>
<td>0,84</td>
<td>4,00</td>
<td>1,09</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na</td>
<td>38,7</td>
<td>40,3</td>
<td>38,8</td>
<td>39,4</td>
<td>39,4</td>
<td>38,6</td>
<td>38,8</td>
<td>38,7</td>
<td>40,3</td>
<td>39,8</td>
<td>37,0</td>
<td>40,5</td>
<td>982</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DEN</td>
<td>0,73</td>
<td>0,62</td>
<td>0,69</td>
<td>0,80</td>
<td>0,48</td>
<td>0,25</td>
<td>0,22</td>
<td>0,32</td>
<td>0,62</td>
<td>1,14</td>
<td>1,00</td>
<td>1,40</td>
<td></td>
</tr>
<tr>
<td>OBSCURA</td>
<td>Hembras</td>
<td>Na</td>
<td>194,5</td>
<td>182,0</td>
<td>175,0</td>
<td>162,3</td>
<td>155,1</td>
<td>148,5</td>
<td>151,4</td>
<td>157,7</td>
<td></td>
<td></td>
<td></td>
<td>1816</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Machos</td>
<td>DEN</td>
<td>5,39</td>
<td>1,51</td>
<td>0,33</td>
<td>0,15</td>
<td>0,16</td>
<td>0,26</td>
<td>1,01</td>
<td>5,25</td>
<td></td>
<td></td>
<td></td>
<td>823</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Na</td>
<td>132,2</td>
<td>165,5</td>
<td>158,7</td>
<td>150,7</td>
<td>148,2</td>
<td>148,1</td>
<td>165,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DEN</td>
<td>3,68</td>
<td>1,51</td>
<td>0,19</td>
<td>0,32</td>
<td>0,28</td>
<td>1,91</td>
<td>5,46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
res adultos (Fig. 2) los juveniles de la AI tuvieron un ritmo de crecimiento más alto que los individuos de la AV y, por lo visto, fueron similares a los especímenes jóvenes de la AI de *Illex illecebrosus* (Radtké, 1983; nuestros datos).

El ritmo de crecimiento para los machos y las hembras juveniles e inmaduros no se diferenció prácticamente. Los machos de todas las agrupaciones empezaron a madurar en su mayoría más temprano que las hembras (aproximadamente dos meses más temprano), siendo su ritmo de crecimiento para edades mayores a 200 días significativamente menor que en las hembras (aproximadamente un tercio menor).

Los calamares ecolóyos de los huevos en diferentes meses se distinguieron mucho por su ritmo de crecimiento (Tablas 4 y 5) según se describe a continuación:

a) Calamares de la generación de verano (diciembre-febrero)

Los juveniles de estos calamares salen en alta mar, fuera de la zona pesquera de 200 millas de la Argentina, principalmente en el área de confluencia de las aguas de las Corrientes de Malvinas y del Brasil desde marzo hasta mayo. Por lo visto, la mayoría de los juveniles se encuentra sobre la plataforma. Los calamares adultos maduros en diciembre y enero salen con los aflujos de las aguas cálidas de plataforma a menores profundidades (120-150 m) en el área entre 45 y 47°S. El principal biotopo de desove son las aguas al norte de 45°S. Los juveniles crecen lentamente. En otoño e invierno el ritmo de crecimiento disminuye y a la edad de 260 a 300 días maduran con 18-23 cm de largo. La edad máxima se observó en dos

Tabla 3. Caracterización de individuos juveniles de *Illex argentinus* en 1986/87 e *Illex illecebrosus* en 1984 (LM = valor promedio inicial y final del largo del manto a la edad correspondiente en mm, IRLM = incremento relativo del largo del manto en %, P = promedio del peso del cuerpo a la edad correspondiente, IRP = incremento relativo del peso del cuerpo en %).

<table>
<thead>
<tr>
<th>Especie y agrupación</th>
<th>Edad (días)</th>
<th>60-90</th>
<th>90-120</th>
<th>120-150</th>
<th>150-180</th>
<th>180-210</th>
<th>210-240</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illex argentinus</td>
<td>LM</td>
<td>45-85</td>
<td>85-105</td>
<td>105-137</td>
<td>137-175</td>
<td>175-215</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRLM</td>
<td>2,12</td>
<td>0,70</td>
<td>0,88</td>
<td>0,81</td>
<td>0,69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>diciembre de 1986</td>
<td>2,7-7,5</td>
<td>7,5-18,5</td>
<td>18,5-52</td>
<td>52-125</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRP</td>
<td>3,40</td>
<td>3,00</td>
<td>3,40</td>
<td>2,90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illex argentinus</td>
<td>LM</td>
<td>19-30</td>
<td>30-50</td>
<td>50-72</td>
<td>72-105</td>
<td>105-140</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRLM</td>
<td>2,26</td>
<td>1,70</td>
<td>1,20</td>
<td>1,25</td>
<td>0,96</td>
<td></td>
</tr>
<tr>
<td></td>
<td>febrero de 1987</td>
<td>1,1-3,0</td>
<td>3,0-6,2</td>
<td>6,2-10,5</td>
<td>10,5-140</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRP</td>
<td>3,34</td>
<td>3,33</td>
<td>3,28</td>
<td>3,08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illex illecebrosus</td>
<td>LM</td>
<td>32-70</td>
<td>70-110</td>
<td>110-152</td>
<td>152-195</td>
<td>195-236</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRLM</td>
<td>2,80</td>
<td>1,50</td>
<td>1,08</td>
<td>0,83</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRP</td>
<td></td>
<td></td>
<td></td>
<td>0,62</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4. Caracterización del crecimiento de hembras de *Illex argentinus* de diferentes agrupaciones en 1987 (LM = valor promedio inicial y final del largo del manto a la edad correspondiente en mm; IRLM = incremento relativo del largo del manto en %; P = promedio del peso del cuerpo a la edad correspondiente; IRP = incremento relativo del peso del cuerpo en %).

<table>
<thead>
<tr>
<th>Agrupación</th>
<th>Edad (días)</th>
<th>150-180</th>
<th>180-210</th>
<th>210-240</th>
<th>240-270</th>
<th>270-300</th>
<th>300-330</th>
<th>330-360</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eclación</td>
<td>LM</td>
<td>210-255</td>
<td>255-293</td>
<td>293-332</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRLM</td>
<td>0,65</td>
<td>0,46</td>
<td>0,42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>190-355</td>
<td>355-605</td>
<td>605-930</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRP</td>
<td>2,10</td>
<td>1,78</td>
<td>1,40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRLM</td>
<td>0,71</td>
<td>0,52</td>
<td>0,40</td>
<td>0,36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>130-280</td>
<td>260-475</td>
<td>475-705</td>
<td>705-1000</td>
<td>1000-1400</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRP</td>
<td>2,36</td>
<td>1,76</td>
<td>1,30</td>
<td>1,17</td>
<td>0,43</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRLM</td>
<td>0,83</td>
<td>0,66</td>
<td>0,55</td>
<td>0,42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>76-176</td>
<td>176-340</td>
<td>340-605</td>
<td>605-930</td>
<td>930-1145</td>
<td>1145-1250</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRP</td>
<td>2,78</td>
<td>2,19</td>
<td>1,92</td>
<td>1,43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IRLM</td>
<td>0,69</td>
<td>0,58</td>
<td>0,51</td>
<td>0,42</td>
<td>0,33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>94-150</td>
<td>150-270</td>
<td>270-445</td>
<td>445-690</td>
<td>690-930</td>
<td>930-1110</td>
<td></td>
</tr>
</tbody>
</table>
hembras desovadas de 23 a 27 cm de largo (380 y 375 días, respectivamente).

b) Calamares de la generación otoñal
(marzo-mayo)

Se pescaron en el área alrededor de 45°S desde enero hasta abril, variando su proporción en las capturas en enero y febrero entre 30% en 1987 y 50-60% en 1986. El principal biotopo de desove son las aguas de plataforma y su talud sobre las profundidades de 170 a 300 m. Los juveniles de la AO se desarrollan en el periodo frío, siendo sus ritmos de crecimiento bajos. Los calamares alcanzan 15 a 16 cm solamente a la edad de 220-250 días. En verano el ritmo de crecimiento aumenta (en hembra hasta 1,2-2,0% LM/día y en machos hasta 1,6-1,9% LM/día). Las primeras hembra maduran a la edad de 240 días y los machos alcanzan la madurez a la edad de 200-210 días. Para el momento de desove, a la edad de 330-340 días el largo de hembras fue en promedio de 29-30 cm y el de machos de 24-25 cm. La edad máxima fue registrada para un macho maduro de 32 cm de largo (370 días) y para una hembra madura de 31 cm (380 días).

c) Calamares de la generación invernal
(junio-agosto)

Se pescaron en el área de 45 a 47°S durante toda la estación de pesca. Su proporción en las capturas aumenta de 50-70% en enero y febrero y a 95-100% entre abril y julio. El principal biotopo de desove son las aguas del talud a profundidades de 500 a 800 m. Los juveniles menores de la AI se caracterizan por su mayor ritmo de crecimiento. A principios del verano (diciembre) a las edades de 150 a 180 días, alcanzaron tamaños de 13 a 17 cm. En el verano el ritmo de crecimiento fue alto (2,3-2,7% LM/día), reduciéndose a 1,3-1,7% LM/día en otoño. En invierno los calamares maduros tuvieron incrementos mínimos que fueron de 0,4 a 0,5% LM/día. La maduración de los machos tiene lugar en verano (enero y febrero) siendo su largo de 19-

Tabla 5. Caracterización del crecimiento de machos de *Illex argentinus* de diferentes agrupaciones en 1987 (LM = valor promedio inicial y final del largo del manto a la edad correspondiente en mm; RLM = incremento relativo del largo del manto en %; P = valor promedio del peso del cuerpo a la edad correspondiente; IRP = incremento relativo del peso del cuerpo en %).

<table>
<thead>
<tr>
<th>Agrupación</th>
<th>Edad (días)</th>
<th>150-180</th>
<th>180-210</th>
<th>210-240</th>
<th>240-270</th>
<th>270-300</th>
<th>300-330</th>
<th>330-360</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>IR LM</td>
<td>0,38</td>
<td>0,23</td>
<td>0,22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLM</td>
<td>1,35</td>
<td>1,13</td>
<td>0,93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>IR LM</td>
<td>0,48</td>
<td>0,38</td>
<td>0,37</td>
<td>0,32</td>
<td>0,27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLM</td>
<td>1,56</td>
<td>1,40</td>
<td>1,50</td>
<td>0,52</td>
<td>0,48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>IR LM</td>
<td>0,62</td>
<td>0,41</td>
<td>0,26</td>
<td>0,36</td>
<td>0,21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLM</td>
<td>1,56</td>
<td>1,40</td>
<td>1,50</td>
<td>0,52</td>
<td>0,48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>IR LM</td>
<td>0,47</td>
<td>0,40</td>
<td>0,31</td>
<td>0,27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RLM</td>
<td>2,67</td>
<td>1,63</td>
<td>1,47</td>
<td>1,23</td>
<td>0,80</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

21 cm y sus edades de 190 a 240 días y estando todos los machos con edades mayores de 240 días maduros. Las hembres empiezan a madurar más tarde (a fines de verano o a principios de otoño) a la edad de 220 a 230 días (con largo de 20 a 30 cm), madurando en su mayoría a la edad de 250 a 260 días (con largo de 24 a 26 cm). Las hembras están completamente maduras a fines de otoño o a principios de invierno a la edad de 300 a 310 días. Los calamares de la AI alcanzaron los mayores tamaños para la especie, alcanzando las hembras a la edad 330 y 340 días largos de 34 a 39 cm y los machos a la edad de 320 a 330 días largos de 30 a 32 cm.

d) Calamares de la generación primaveral
(setiembre-noviembre)

Se encontraron individualmente en capturas tomadas a bajas profundidades (120-170 m) desde mayo hasta junio. El principal biotopo es, por lo visto, las aguas de plataformas. Es difícil caracterizar por el momento a los calamares de la AP.
Fig. 3. Curvas de crecimiento (A) y proporción de hembras (B) de *Illex argentinus* de diferentes agrupaciones a partir de individuos capturados cada 15 días en 1987 (1. Datos resumidos por método indirecto. Agrupaciones de: 2. abril, 3. mayo, 4. junio, 5. julio y 6. agosto).

por carencia de material disponible.

Dentro de cada agrupación de calamares estudiada también se observaron diferencias en el ritmo de crecimiento (Fig. 2, Tablas 4 y 5).

Tanto en los machos como en las hembras de la Al se observó el ritmo de crecimiento más bajo en los individuos de la generación de junio y el más alto en los de la generación de agosto.

Se observaron diferencias interanuales en el ritmo de crecimiento de una misma generación. Los incrementos más bajos en calamares de la eclosión de mayo de la AO se observaron en 1985, siendo los mismos intermedios en 1987 y máximos en 1986. Las diferencias en el ritmo de crecimiento para los calamares de la Al no son tan claras, pero se puede observar la misma tendencia que para los individuos de la AO. Estas diferencias en el ritmo de crecimiento en una misma agrupación se atribuyen por lo visto a la variabilidad interanual del régimen hidrológico y las relaciones tróficas en el área de alimentación de los ejemplares jóvenes. El ritmo de crecimiento de calamares jóvenes y adultos de todas las agrupaciones disminuye en la estación fría y aumenta en la estación cálida independientemente de su estadio de desarrollo.

No se observaron indicios de desove en los estatolitos, incluso en los individuos desovados. Las hembras de todas las agrupaciones desovan en plazos cortos a la edad de 310 a 350 días y luego mueren. La copulación tiene lugar un poco antes del desove, muriendo también los machos después de copular. No se observaron discontinuidades entre las estaciones de desove de calamares de todas las agrupaciones.

A juzgar por los individuos desovados, los calamares nacidos en el mismo mes alcanzan su estado de desove a la edad de 270 a 360 días. A fines de febrero y a principios de marzo el 60-70% de las hembras maduras pertenecieron a la Al; esta proporción no es grande si se la compara con la cantidad total de hembras, ya que en este período se encontraron principalmente individuos inmaduros y en maduración. A fines de
mayo y a principios de junio se pescaron individualmente calamares viejos de la AO. De este modo, existe la probabilidad de traspaso de calamares de una agrupación a otra, lo que resultaría en una alta plasticidad de esta especie de ciclo corto.

El ritmo de crecimiento de *Ilex argentinus* estimado por el método directo es mayor que el obtenido con el método indirecto (Fig. 3 y 4). Es que sobre el borde de la Plataforma Patagónica, en el área entre 45 y 47°S se observa un cambio gradual de unas agrupaciones por otras durante la temporada pesquera y la curva de crecimiento resultante obtenida por el desplazamiento de tamaños medios o modales no evidencia el ritmo de crecimiento verdadero de cada agrupación.

DISCUSION

Se puede determinar la periodicidad de ontogenia de *Ilex argentinus* según los estadios de formación de estatolitos, el carácter del inicio de la formación de zonas de crecimiento sobre estatolitos y su propio crecimiento.

Hasta el momento no se conoce la duración de embriogenia de *Ilex argentinus*, pero los experimentos de O’Dor et al (1982) con *Ilex ille- cerosus* y también nuestros datos sobre la edad media de hembras desovadas de *Ilex argentinus* (entre 330 y 340 días) permiten suponer que los huevos puestos se desarrollan durante 20 o 30 días a la temperatura de 7-8°C.

El núcleo del estatolito corresponde a este plazo.

El estadio larval (correspondiente a los individuos de 0,1-0,3 y 0,9 cm de largo) dura entre 38 y 40 días en promedio, siendo igual para las diferentes agrupaciones. Se corresponde con el primer estadio de formación del estatolito y su zona postnuclear. El ritmo de crecimiento relativo del cuerpo es máximo en ontogenia, siendo de 15 a 18% LM/día.

El estadio de alevino y juvenil (correspondiente a individuos de 0,8-0,9 a 12-16 cm de largo) dura entre 140 y 190 días en las diferentes agrupaciones. Se corresponde con los estadios 2-4 de desarrollo de los estatolitos y con la zona obscura. El ritmo de crecimiento de los calamares mismos se reduce en comparación con los de las larvas a 2-2,2% LM/día y 3-5% LM/día.

El estadio transitorio no está bien marcado, como en los calamares de la subfamilia Ommastrephinae (Arkhipkin y Murzov, 1986). Por lo
vist0, la formación del aspecto de nadador activo (necteur) de *IlleX argentinus* tiene lugar en un vasto espectro de tamaños, es decir entre 15-16 y 25-27 cm.

El estadio adulto (correspondiente a individuos de 18 a 40 cm del largo del manto) dura entre 120 y 160 días y finaliza con el desove y la muerte de los postdesovantes; se corresponde con el estadio 5 de desarrollo del estalitico y con la zona periférica. El ritmo de crecimiento baja durante este estadio a 1-1.3% LM/día y 2-2.5% LM/día en los individuos inmaduros y a 0.4-0.8% LM/día y 0.6-1.2% LM/día en los especímenes maduros. El crecimiento somático continúa en los individuos maduros evidentemente hasta el estadio 5a (según la escala de madurez elaborada por Zuev et al., 1985).

De esta manera, influyen significativamente sobre los tamaños finales de calamares, en primer lugar, el ritmo de crecimiento de larvas y juveniles primitivos y, en segundo lugar, la duración de los estados. Con este alto ritmo de crecimiento en las etapas juveniles hasta alcanzar tamaños de 4 a 6 cm, aunque posteriormente el ritmo declina, los calamares pueden llegar a largos entre 35 y 40 cm y pesos entre 1,2 y 1,3 kg (hembras de la AI) a la edad de 300 días. Por el contrario, con ritmo de crecimiento bajo en individuos jóvenes, los calamares de la AV tienen a la edad de 160 a 210 días relativamente un ritmo de crecimiento más alto que los individuos de la AI, solamente alcanzan de 18 a 23 cm de largo a los 300 días.

A partir de los datos del cálculo retrospectivo de fechas de nacimiento para los calamares, ha sido confirmada la hipótesis de Brunetti (1981), Hatanaka (1986a) y Nigmatullin (1986) sobre el desove de todo el año. Dentro del área de distribución del calamar existen cuatro agrupaciones estacionales, es decir AV, AQ, AI y AP que se diferencian por estaciones y biotopos de desove y también por los tamaños de los individuos maduros. El ciclo de vida para cada una de las agrupaciones es en promedio un año. Una coincidencia parcial de los plazos y biotopos de desove de las agrupaciones con un vasto rango de edades de desove significa probablemente que las agrupaciones estacionales de *IlleX argentinus* no son genéticamente aisladas y representan unidades intrapoblacionales cuyas diferencias son el resultado del polimorfismo ecológico de calamares pertenecientes a la misma superfamilia. Resultados similares fueron obtenidos al estudiar las agrupaciones de verano y de invierno para *Photololigo edulis* (Natsukari et al., 1986).

Un amplio espectro en los ritmos de crecimiento en el inicio de la maduración de los indi-

viduos y en la duración de la vida, así como el desove a lo largo de todo el año de las agrupaciones que forman la especie es la adaptación para la sobrevivencia máxima en el ambiente, considerando la monociclicidad y la corta duración de la vida de *IlleX argentinus* bajo condiciones ambientales inestables.

AGRADECIMIENTOS

Quisiera expresar mi reconocimiento profundo a Ch. M. Nigmatullin por plantearme la tarea, su atención constante y discusión detallada de los resultados del trabajo. También agradezco a los científicos del Laboratorio de Investigaciones de Invertebrados Comerciales del AtlantNIRO por su ayuda en la colección del material, a M.V. Bykova por el pulido de los estaliticos y a N. A. Golutbeva por los dibujos.

BIBLIOGRAFÍA

LETA, H.R. 1982. Descripcion de la morfología de los estaliticos de tres especies de calamar (*Cephalopoda*...

