APTITUD DE LAS ESPECIES MERLUZA, ROUGET, CORVINA, PESCADILLA Y CASTANETA PARA LA OBTENCIÓN DE SURIMI

Eduardo Morales, Nelson Avdalov y Carlos Malán
Instituto Nacional de Pesca
Constituyentes 1407, Montevideo, República Oriental del Uruguay

RESUMEN: SURIMI es el término japonés aplicado a la pulpa de pescado lavada y estabilizada, que constituye una etapa intermedia de una amplia y diversificada gama de productos. Esta tecnología a partir de la década del 60 se ha desarrollado rápidamente, llegando en la actualidad a ocupar un importante lugar en el mercado de productos pesqueros con un volumen de 408,000 toneladas con precios que van de los 2,000 a 3,200 dólares la tonelada.

No es factible obtener un producto de buena calidad con todas las especies, ya que son varios los factores que inciden en la misma. Uno de los parámetros más importantes en la calidad del surimi engloba la capacidad de formación de gel y la elasticidad, y es conocido como ahi en Japón.

Para la realización de este trabajo se utilizaron diversas especies y la calidad fue evaluada orgánolépticamente.

De los resultados se desprende que es factible la realización de surimi con alguna de las especies utilizadas, obteniendo productos de buena calidad. La merluza y el rouget permitieron elaborar productos de mejor calidad no sólo en cuanto al ahi sino en cuanto al color y sabor.

SUMMARY: APTITUDE OF THE HAKE, BLACKBELLY ROSEFISH, WHITE CROAKER, STRIPPED WEAKFISH AND HAWKFISH SPECIES FOR THE OBTENCIÓN OF SURIMI — Surimi is a stabilized, frozen, intermediate product prepared by freshwater leaching of mechanically deboned fish muscle. This yields a bland light colored, and highly functional food product which is widely used to make analogous seafood products resembling crab meat, scallops shrimps, etc. Actually 408,000 tons per year of surimi are produced mainly in USA and Japan. Prices go from US$ 2,000 to US$ 3,200/tons.

Not all species are suitable for obtaining a good quality surimi. Various factors are to be considered. One of the most important is the gel forming ability or ahi.

Several species were evaluated in this paper and results show that hake and blackbelly rosefish were particular suitable for the elaboration of good quality surimi.

Palabras clave: Surimi de merluza, rouget, corvina, pescadilla y castañeta.

INTRODUCCION

El surimi es la pulpa de pescado lavada y estabilizada con crioproretectores.

En adición a factores intrínsecos de las diferentes especies los requerimientos básicos para elaborar surimi en base a un recurso cualquiera serían: a) disponibilidad en abundancia del recurso; b) bajo costo de la materia prima; c) frescura del pescado (la calidad y el precio del producto final están en proporción directa con ella) y d) un estrecho control de calidad en las fases de producción, transporte y almacenamiento.

La obtención de surimi a nivel industrial comienza a pequeña escala en Japón en la década del 60, desarrollándose rápidamente una importante industria ocupan-

do en la actualidad un destacado lugar en el mercado de productos pesqueros, con un volumen de 408,000 toneladas con precios que van de los 2,000 a 3,200 dólares para el procesado a bordo.

Esta tecnología de origen japonés fue transferida a varios países, que como Estados Unidos, constituyen un alentador mercado.

MATERIAL Y METODOS

Las especies utilizadas como materia prima fueron:
- merluza (Merluccius hubbsi)
- rouget (Helicolenus dactylopterus lalillei)
- corvina (Micropogonias furnieri)
- pescadilla (Cynoscion striatus)
- castañeta (Cheliodactylus bergi)

Para la obtención del surimi la materia fue sometida al proceso de corte, lavado, desmenuzado, sucesivos lavados y escurri-
Fig. 1. Diagrama del proceso para la elaboración de surimi

dos, prensado, tamizado, amasado y mezclado, moldeado y congelado (Fig. 1). Básicamente las etapas del proceso se detallan a continuación:

Obtención de la pulpa

Luego del lavado y espalmado el pescado de óptima frescura se somete a la acción de una máquina despulpadora, en donde se separa de piel y espinas. Independientemente del tipo de maquinaria utilizada es importante el tamaño de las partículas obtenidas para el posterior lavado. Si las partículas son muy chicas puede haber una disminución del rendimiento y si son excesivamente grandes el lavado sería incompleto.

Para la obtención de la pulpa se utilizó una picadora manual con orificios de 0,5 cm de diámetro.

Lavado - Blanqueamiento

Esta es la etapa más importante, debe realizarse con agua fría a temperaturas inferiores a los 6°C, a razón de 4 a 5 partes de agua por una de pescado y se realiza va-
ras veces en forma consecutiva.

La función principal del lavado consiste en eliminar sangre, pigmentos, materia grasa, sustancias nitrogenadas no proteicas y sustancias solubles como albúmina, vitaminas y minerales.

En el caso específico de utilizar especies gádidas el factor lavado incidiría favorablemente eliminando de cierto modo la formación de formaldehído durante el almacenamiento, generado por la reacción enzima sustrato (TMAOasa/TMAO). Esta remoción por lavado de la enzima TMAOasa, su co-factor y/o su sustrato TMAO y la adición de sucrasa y sorbitol, que retardan la desnaturalización por frío de las proteínas, haría un producto con buena capacidad de formación de gel y con una prolongada vida útil en almacenamiento congelado.

El tanque de lavado debe tener un desagüe que permita eliminar fácilmente el líquido sobrenadante. El agua con un elevado grado de dureza por la presencia de calcio y magnesio puede afectar la textura del producto almacenado.

Si la temperatura supera los 6°C se corre el riesgo de desnaturalización de la proteína con la consiguiente pérdida de la capacidad de formación de gel, factor indispensable para la obtención de un surimi de buena calidad.

A la vez con elevadas temperaturas en el agua de lavado hay pérdida de proteínas salino-solubles como la actina, miosina y actomiosina, lo que tampoco es deseable.

Otro factor que incide en el lavado es el salado del agua de lavado, ya que en las carnes con pH alto existe dificultad con el proceso de deshidratación, pero que se agrega 0,15% - 0,3% de NaCl para facilitar la deshidratación.

El lavado o blanqueamiento de la pulpa determina entonces una pérdida del 15 al 20% del peso, lo que permite una concentración mayor de las proteínas salino-solubles.

En este trabajo el lavado se realizó con agua destilada a 5°C, a razón de 5 partes de agua por una de pescado, repitiendo 3 veces la operación.

Prensado

En esta etapa mediante prensado o centrífugado se elimina el agua de la pulpa hasta llegar a la concentración inicial del 84-86%.

El prensado se efectuó con una tala de trama fina, torcionándola hasta llevar la humedad de la pulpa al 80% aproximadamente.

Fig. 2 - Proceso de transformación de la textura del pescado
Refinado o tamizado

Se utilizan mallas de 1,2 mm para el tamizado de la pulpa a fin de eliminar impurezas tales como escamas, peritoneo, espinas pequeñas, etc. A mayor calidad en la pureza del refinado, menor rendimiento en el producto final. Se considera en esta etapa una eficiencia promedio de 80% cuando los residuos resultantes oscilan en un 10% de la carne picada.

El tamizado se realizó en forma manual haciendo pasar la pulpa lavada por un tamiz metálico de pequeña trama de enmalla.

Amasado y mezclado

La homogeneización se realiza mediante el molino de piedra con paletas giratorias, rompiéndose la estructura celular, quedando una pasta desintegrada.

En algunos casos puede añadirse 1,5% de sal al surimi durante el mezclado, en cuyo caso se usa un 10% de azúcar en vez del 5% y el contenido de humedad es disminuido. El propósito de este salado es incrementar la capacidad de ashi (elásticidad del gel) del surimi pero no el mismo tiempo de vida útil del producto que envasado a -20°C como se ve disminuida a alrededor de 6 meses (comparado con aproximadamente 1 año para un producto equivalente sin salado). Desde el conocimiento de la acción de los fosfatos en la carne, que también incrementa la capacidad de ashi pero no limita el tiempo de almacenamiento, la sal ha sido usada de forma adecuada en la elaboración de surimi.

Con el agregado de sal a razón de 2,5 a 3% la carne se transforma en un gel (Fig. 2) debido a la solubilización de las proteínas salino-solubles.

Es inconvenciente que durante esta etapa el producto supere los 10°C porque hay desnaturalización proteínica con pérdida de las propiedades elásticas.

La estabilización se logra con el agregado de fosfato de sodio o potasio, si 0,1% —0,2% y azúcares como azúcar, sorbitol, o glucosa del 5 al 10% (Nishioka, 1988).

Sucrosa o sorbitol se adiciona al surimi de alta calidad que requiere un buen color blanco. Glucosa que es más barata se añade a surimi de inferior grado de calidad para ser utilizado en embutidos, ya que el color más oscuro dado por la reacción amino carbonil no es un factor final importante en este tipo de producto.

En este trabajo el amasado y mezclado con los aditivos se efectuó con una espátula metálica, adicionándole a la pulpa un 10% de azúcar y 0,25% de fosfato de sodio.

Moldeado y congelado

El moldeado se realiza comúnmente en bloques de 10 kg, en bolsas de polietileno y en cajas de cartón mediante armario de plástico.

La pulpa puede preservarse por un año en almacenamiento a -20°C (Lee Chong, 1984).

La pulpa tratada o surimi, puede ser sometida a una cocción con aditivos fundamentalmente saborizantes, obteniendo una pasta de pescado, que genéricamente llamamos 'kamaboko' o torta elástica de pescado.

En la presente investigación una vez amasado, mezclado y homogeneizado el producto se envasó en bolsitas de polietileno y se congeló almacenándose a -20°C.

Para la evaluación, el surimi así elaborado se descongeló, se le adicionó un 2,5% de sal, se le moldeó en cilindros y se le sometió a una cocción a 100°C en vapor durante 20 minutos.

Factores de calidad

Hay 3 factores primordiales para establecer la calidad del surimi: sabor, color y ashi.

Los factores que afectan la capacidad de ashi del surimi son fundamentalmente: las especies utilizadas, época y áreas de pesca, frescura, aditivos y métodos de procesamiento. La edad y madurez sexual afectan en el sentido de que el pescado joven y sexualmente inmaduro presenta generalmente mejor capacidad de gelificación, y por el contrario el pescado capturado durante e inmediatamente después del desove tiene una baja capacidad de ashi. Con respecto a la frescura de la materia prima se entiende que cuanto más se demore en iniciar el procesamiento la capacidad de ashi será más baja y el surimi resultante de baja calidad.

Los parámetros sensoriales evaluados fueron color, olor, sabor, textura y ashi, resumiéndolos todos en una calificación total (Tabla I).

El color desgastado y por lo tanto al que se le asigna los mayores puntajes, fue el blanco o blanco nacarado. A medía que este color pierde su pureza tornándose amarillo o grisáceo se le calificó con puntajes inferiores.

El sabor y el olor deben ser lo más neutros posibles, otorgándose menores puntajes cuando presentan olor o sabor a pescado aunque sea en grado leve.

La textura y el ashi (elásticidad) son evaluados subjetivamente mediante pruebas de tensión, mordida y doblado. La primera consiste en estirar el cilindro de surimi, determinando en qué momento la tensión lo-
<table>
<thead>
<tr>
<th>ESPECIE</th>
<th>COLOR</th>
<th>OLOR</th>
<th>SABOR</th>
<th>TEXTURA</th>
<th>ASHI</th>
<th>CLASIFICACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>merluza</td>
<td>bueno</td>
<td>bueno</td>
<td>bueno</td>
<td>buena</td>
<td>bueno</td>
<td>1</td>
</tr>
<tr>
<td>rouget</td>
<td>bueno</td>
<td>bueno</td>
<td>bueno</td>
<td>buena</td>
<td>bueno</td>
<td>1</td>
</tr>
<tr>
<td>corvina</td>
<td>malo</td>
<td>malo</td>
<td>regular</td>
<td>regular</td>
<td>regular</td>
<td>2</td>
</tr>
<tr>
<td>pescadilla</td>
<td>malo</td>
<td>malo</td>
<td>regular</td>
<td>malo</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>castañaeta</td>
<td>muy malo</td>
<td>malo</td>
<td>regular</td>
<td>bueno</td>
<td></td>
<td>3*</td>
</tr>
</tbody>
</table>

La prueba de mordida se efectúa presionando con los dientes y evaluando la resistencia a esta operación; y la prueba del doblado se efectúa doblando sucesivas veces el cilindro sobre sí mismo hasta lograr su ruptura.

RESULTADOS Y CONCLUSIONES

Se optó en esta instancia por clasificar en orden a la aptitud de cada especie para su utilización en la elaboración de surimi, otorgando el grado 1 a los más aptos y 3 para los inadecuados.

La calificación 1, 2 o 3 no es el resultado matemático de la evaluación de los caracteres evaluados (olor, color, sabor, textura, ashi), sino que supone una valoración global, dado que cada carácter no se evalúa numéricamente.

De la Tabla 1 se desprende que merluza y rouget (clasificación 1) serían especies muy adecuadas para la elaboración de surimi de óptima calidad.

La corvina (clasificación 2) ofrece ciertas dificultades por su color y olor, ya que no se logra un color blanco nacarado, sino que la pulpa presenta un color rosado y mediante los lavados no se elimina totalmente el olor a pescado. Una posibilidad para la corvina sería su utilización en productos del tipo de los embutidos, en donde el color y olor no son primordiales.

La pescadilla y la castañaeta obtuvieron clasificación 3, debido fundamentalmente a la baja puntuación en el atributo color. El surimi de pescadilla presentó un fuerte color amarronado y la castañaeta un color gris oscuro por el alto grado de parasitismo. Estos bajos puntajes en este atributo descalifican a estas especies, por más que otros caracteres sean superiores.

Estos resultados preliminares sugieren que la merluza y el rouget tendrían un excelente potencial como materia prima para producción de surimi, con vistas a la elaboración posterior de productos texturizados.

Si bien el proceso de la merluza está ampliamente explotado no así el rouget y otras especies, sobre las cuales se deberían ahondar los esfuerzos para lograr a través de esta tecnología y/o similares un aprovechamiento racional de las mismas.

BIBLIOGRAFÍA

NISHIOKA, F. 1986. Proteínas del Músculo del Pescado y Técnicas para la Elaboración del Kamaboko. II Curso Internacional de Tecnología de Procesamiento de Productos Pesqueros. ITP - SICA.

GONZALEZ, O. F. 1986. Procesamiento de Embutidos de Pescado, II Curso Internacional Tecnología de Procesamiento de Productos Pesqueros. ITP - SICA.
